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Motivation

Flavor physics

Indirect CP violation: εK
Hadronic matrix element: BK and B2, · · · ,B5 [Jaehoon Leem]
CKM matrix element: Vcb [Yong-Chull Jang]

Lattice QCD calculation as a high precision test of the standard model
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Motivation

Renormalization

Hadronic matrix element: BK

O∆S=2 =
∑
ν

[s̄γν(1− γ5)d ][s̄γν(1− γ5)d ] (1)

Renormalization

Lattice perturbation theory [J.J.Kim et al. PRD 81 (2010) 114503,
PRD 83 (2011) 094503]
Non-perturbative renormalization (NPR) [J.H.Kim et al.
arXiv:1410.6607]
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Motivation

Non-perturbative renormalization (NPR)

[G.Martinelli et al. NPB 445 (1995) 81-105]

Regularization independent (RI or RI-MOM) scheme

renormalization condition on a correlation function
with fixed external momenta

Correlation function with external quark state

need to fix the gauge
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Landau gauge fixing on lattice

Landau gauge fixing

From the initial set of gauge configuration, we numerically obtain a new
set by gauge transformation

{Aµ(x)}, {Uµ(x)} → {Ag
µ(x)}, {Ug

µ (x)}, (2)

such that

∂µA
g
µ(x) = 0. (3)
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Landau gauge fixing on lattice

Minimizing functional

In Abelian gauge theory on continuum, minimizing the positive definite
functional

F =

∫
d4x Aµ(x)Aµ(x) (4)

gives a gauge fixing. Under the gauge transformation Aµ → Aµ − ∂µχ,

δF = 2

∫
d4x χ(x)∂µAµ(x), (5)

we have the Landau gauge fixing condition

δF = 0 ↔ ∂ · A(x) = 0. (6)
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Landau gauge fixing on lattice

Non-Abelian gauge theory

In non-Abelian gauge theory, we have an analogous functional

F =

∫
d4x tr[Aµ(x)Aµ(x)]. (7)

The gauge transformation with G (x) = e iω(x) ∈ SU(NC ) is

Aµ(x)→ G (x)Aµ(x)G (x)† + i(∂µG (x))G (x)† (8)

Under this variation,

δF = 2

∫
d4x tr[(∂ · A)ω], (9)

the extrimizing condition δF = 0 for an arbitrary variation ω(x) requires
the Landau gauge condition, ∂ · A(x) = 0.
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Landau gauge fixing on lattice

Lattice gauge theory (1)

On the lattice, we write the functional in terms of link variable Uµ(x),

FL =
∑
µ,x

Tr[Uµ(x) + Uµ(x)†]. (10)

By using the expression Uµ(x) = e iaAµ(x) ∈ SU(NC ) where a is the lattice
spacing, lattice functional is equivalent to the previous functional in the
continuum limit (a→ 0),

FL =
∑
µ,x

Tr[2− a2Aµ(x)Aµ(x) + O(a3)]. (11)

Sungwoo Park (SNU) Joint Winter Conference 01/2015 8 / 22



Landau gauge fixing on lattice

Lattice gauge theory (2)

The gauge transformation of the link with G (x) = e iω(x) ∈ SU(NC ) is

Uµ(x)→ G (x)Uµ(x)G †(x + µ). (12)

By some algebra, the functional variation with respect to ω(x) = ωa(x)T a

is

δFL
δωa(x)

T a = − i

2

∑
µ

δ−µ

[
[Uµ(x)− Uµ(x)†]− 1

NC
Tr[Uµ(x)− Uµ(x)†]

]
≡ − i

2
∆(x) (13)

where a = 1, and δµf (x) = f (x + µ)− f (x). Lattice version of the Landau
gauge is ∆(x) = 0.
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Landau gauge fixing on lattice

Lattice gauge theory (3)

{Uµ(x)} : gauge configuration, a set of gauge links.

∆(x) =
∑
µ

δ−µ

[
[Uµ(x)− Uµ(x)†]− 1

NC
Tr[Uµ(x)− Uµ(x)†]

]
(14)

= −2ia2∂ · A (a→ 0 limit) (15)

Landau gauge fixing condition on the lattice

∆(x) = 0 ∀x . (16)

or, θ ≡
∑
x

Tr[∆(x)∆†(x)] = 0 (17)
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Cornell Algorithm

Method of the steepest descent

Consider a function f (xa) which has a maximum and its variation

f (x + δx) = f (x) + δxa∇af (x) + O(δx2). (18)

Note that the vector ∇af (x) indicates the direction of steepest ascent. By
choosing the variation along the direction

δxa = α∇af (x), (19)

with small step size α > 0, the function clearly increases,

f (x) > f (x + δx) = f (x) + α(∇f (x))2 + O(α2). (20)
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Cornell Algorithm

Method of the steepest descent (2)

[C.T.H.Davies et al, PRD 37, 1581 (1988)]
Similarly, for the functional FL of lattice Landau gauge fixing,

F g
L = FL +

∑
x

ωa(x)
δFL

δωa(x)
+ O(ω2) (21)

The gauge tranformation with the method of steepest descent is

ω(x) = α
δFL

δωa(x)
T a = − iα

2
∆(x), (22)

or, G (x) = exp(
α

2
∆(x)) (23)

where ∆(x) is calculated from the gauge configuration {Uµ(x)} (: a set of
gauge link).
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Cornell Algorithm

Algorithm

Choose small α.

i-th iteration:
Starts from the gauge configuration {U(i)

µ (x)}, calculate ∆(i)(x) and

G (i)(x) = exp(
α

2
∆(i)(x)), (24)

and update the configuration

U(i+1)
µ (x) = G (i)(x)U(i)

µ (x)G (i)(x + µ̂)†. (25)

Calculate and see the value of ∆(i+1)(x) or θ(i+1).
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Cornell Algorithm

Fourier acceleration

In the continuum QCD,

∆(i) → ∂ · A(i) = ∂ · A(i−1) + α(∂νDν)∂ · A(i−1) (26)

where Dν f = ∂ν f − i [Aν , f ]. In abelian limit, each Fourier component
decays as follows,

∂ · A(i)(p) = (1− αp2)︸ ︷︷ ︸
≈exp[−αp2]

∂ · A(i−1)(p). (27)

Acceleration is,

α→ α
p2
max

p2
. (28)
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Result

Effect of the acceleration

Figure : Iteration on 83 × 32 lattice
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Result

Comparing various algorithms

Tested with node geometry (2,2,1,1)

Algorithm iter time(s)

Cabbibo-Marinari 7200 166

SD 17530 304
SDFA (FFT) 1250 31

Table : 83 × 32 lattice configuration
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Result

Volume dependence of iteration time

Figure : Single iteration time of various lattice volume with node geometry
(2, 2, 2, 2)
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Gribov Copy

Gribov copy

Gribov (1978) discovered that for non-abelian gauge theories, usual
linear gauge conditions does not fix the gauge fields in a unique way.

There can be two different configurations that both satisfy the gauge
fixing condition, but related by nontrivial gauge tr. Simply,

{U} → {Ug1}, {Ug2} (29)

such that θ[Ug1] = θ[Ug2] = 0, but {Ug1} � {Ug2}.
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Gribov Copy

Gribov uncertainty

Matrix elements between quark states

Need gauge fixing.

Additional Gribov copy degree exists and that may appear in the
result with statistical uncertainty.
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Gribov Copy

Generation of Gribov copy

Schematic cartoon of Gribov
copy generation with random
gauge transformation [L.
Giusti et al, Int. J. Mod.
Phys. A 16, 3487 (2001)]
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Gribov Copy

The landscape of minima of the functional FL

Figure : Histogram of 200 confs. generated from a single 83 × 32, β = 5.7 conf.
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Gribov Copy

Future plan

Multi-GPU implementation of the gauge fixing algorithm

Gribov copy dependence of NPR related to the neutral Kaon mixing
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