Lattice Gauge Fixing and Gribov Copies on the Lattice

Sungwoo Park

[SWME Collaboration] Lattice Gauge Theory Research Center Department of Physics and Astronomy Seoul National University

January 30, 2015

Sungwoo Park (SNU)

Joint Winter Conference

01/2015 1 / 22

(B)

Flavor physics

- Indirect CP violation: ϵ_K
 - Hadronic matrix element: B_K and B_2, \cdots, B_5 [Jaehoon Leem]
 - CKM matrix element: V_{cb} [Yong-Chull Jang]

• Lattice QCD calculation as a high precision test of the standard model

(日) (周) (三) (三)

Renormalization

• Hadronic matrix element: B_K

$$O_{\Delta S=2} = \sum_{\nu} \left[\bar{s} \gamma_{\nu} (1 - \gamma_5) d \right] \left[\bar{s} \gamma_{\nu} (1 - \gamma_5) d \right]$$
(1)

- Renormalization
 - Lattice perturbation theory [J.J.Kim et al. PRD 81 (2010) 114503, PRD 83 (2011) 094503]
 - Non-perturbative renormalization (NPR) [J.H.Kim et al. arXiv:1410.6607]

A B A A B A

Non-perturbative renormalization (NPR)

[G.Martinelli et al. NPB 445 (1995) 81-105]

- Regularization independent (RI or RI-MOM) scheme
 - renormalization condition on a correlation function
 - with fixed external momenta
- Correlation function with external quark state
 - need to fix the gauge

< 3 > < 3 >

Landau gauge fixing

From the initial set of gauge configuration, we numerically obtain a new set by gauge transformation

$$\{A_{\mu}(x)\}, \{U_{\mu}(x)\} \rightarrow \{A^{g}_{\mu}(x)\}, \{U^{g}_{\mu}(x)\},$$
 (2)

such that

$$\partial_{\mu}A^{g}_{\mu}(x) = 0.$$
 (3)

(4) (5) (4) (5)

Minimizing functional

In Abelian gauge theory on continuum, minimizing the positive definite functional

$$F = \int d^4x \ A_\mu(x) A_\mu(x) \tag{4}$$

gives a gauge fixing. Under the gauge transformation ${\cal A}_\mu o {\cal A}_\mu - \partial_\mu \chi$,

$$\delta F = 2 \int d^4 x \ \chi(x) \partial_\mu A_\mu(x), \tag{5}$$

we have the Landau gauge fixing condition

$$\delta F = 0 \quad \leftrightarrow \quad \partial \cdot A(x) = 0. \tag{6}$$

イロト 不得下 イヨト イヨト 二日

Non-Abelian gauge theory

In non-Abelian gauge theory, we have an analogous functional

$$F = \int d^4 x \operatorname{tr}[A_{\mu}(x)A_{\mu}(x)].$$
(7)

The gauge transformation with $G(x) = e^{i\omega(x)} \in SU(N_C)$ is

$$A_{\mu}(x) \rightarrow G(x)A_{\mu}(x)G(x)^{\dagger} + i(\partial_{\mu}G(x))G(x)^{\dagger}$$
 (8)

Under this variation,

$$\delta F = 2 \int d^4 x \, \mathrm{tr}[(\partial \cdot A)\omega], \tag{9}$$

(日) (周) (三) (三)

the extrimizing condition $\delta F = 0$ for an arbitrary variation $\omega(x)$ requires the Landau gauge condition, $\partial \cdot A(x) = 0$.

Lattice gauge theory (1)

On the lattice, we write the functional in terms of link variable $U_{\mu}(x)$,

$$F_{L} = \sum_{\mu,x} \text{Tr}[U_{\mu}(x) + U_{\mu}(x)^{\dagger}].$$
(10)

By using the expression $U_{\mu}(x) = e^{iaA_{\mu}(x)} \in SU(N_{C})$ where *a* is the lattice spacing, lattice functional is equivalent to the previous functional in the continuum limit $(a \rightarrow 0)$,

$$F_L = \sum_{\mu,x} \text{Tr}[2 - a^2 A_\mu(x) A_\mu(x) + O(a^3)].$$
(11)

- 4 同 6 4 日 6 4 日 6

Lattice gauge theory (2)

The gauge transformation of the link with $G(x) = e^{i\omega(x)} \in SU(N_C)$ is

$$U_{\mu}(x) \rightarrow G(x)U_{\mu}(x)G^{\dagger}(x+\mu).$$
 (12)

By some algebra, the functional variation with respect to $\omega(x) = \omega^a(x)T^a$ is

$$\frac{\delta F_L}{\delta \omega^a(x)} T^a = -\frac{i}{2} \sum_{\mu} \delta_{-\mu} \left[[U_{\mu}(x) - U_{\mu}(x)^{\dagger}] - \frac{1}{N_C} \text{Tr}[U_{\mu}(x) - U_{\mu}(x)^{\dagger}] \right]$$
$$\equiv -\frac{i}{2} \Delta(x) \tag{13}$$

where a = 1, and $\delta_{\mu}f(x) = f(x + \mu) - f(x)$. Lattice version of the Landau gauge is $\Delta(x) = 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Lattice gauge theory (3)

 $\{U_{\mu}(x)\}$: gauge configuration, a set of gauge links.

$$\Delta(x) = \sum_{\mu} \delta_{-\mu} \left[\left[U_{\mu}(x) - U_{\mu}(x)^{\dagger} \right] - \frac{1}{N_{C}} \operatorname{Tr} \left[U_{\mu}(x) - U_{\mu}(x)^{\dagger} \right] \right]$$
(14)
= $-2ia^{2}\partial \cdot A \quad (a \to 0 \text{ limit})$ (15)

Landau gauge fixing condition on the lattice

$$\Delta(x) = 0 \quad \forall x. \tag{16}$$

or,
$$\theta \equiv \sum_{x} \operatorname{Tr}[\Delta(x)\Delta^{\dagger}(x)] = 0$$
 (17)

(人間) トイヨト イヨト

Method of the steepest descent

Consider a function $f(x^a)$ which has a maximum and its variation

$$f(x+\delta x) = f(x) + \delta x^{a} \nabla^{a} f(x) + O(\delta x^{2}).$$
(18)

Note that the vector $\nabla^a f(x)$ indicates the direction of steepest ascent. By choosing the variation along the direction

$$\delta x^{a} = \alpha \nabla^{a} f(x), \tag{19}$$

with small step size $\alpha > 0$, the function clearly increases,

$$f(x) > f(x + \delta x) = f(x) + \alpha (\nabla f(x))^2 + O(\alpha^2).$$
⁽²⁰⁾

Method of the steepest descent (2)

[C.T.H.Davies et al, PRD 37, 1581 (1988)] Similarly, for the functional F_L of lattice Landau gauge fixing,

$$F_{L}^{g} = F_{L} + \sum_{x} \omega^{a}(x) \frac{\delta F_{L}}{\delta \omega^{a}(x)} + O(\omega^{2})$$
(21)

The gauge tranformation with the method of steepest descent is

$$\omega(\mathbf{x}) = \alpha \frac{\delta F_L}{\delta \omega^a(\mathbf{x})} T^a = -\frac{i\alpha}{2} \Delta(\mathbf{x}), \tag{22}$$

or,
$$G(x) = \exp(\frac{\alpha}{2}\Delta(x))$$
 (23)

where $\Delta(x)$ is calculated from the gauge configuration $\{U_{\mu}(x)\}$ (: a set of gauge link).

イロト 不得下 イヨト イヨト 二日

Algorithm

- Choose small α .
- *i-th iteration*:

Starts from the gauge configuration $\{U^{(i)}_{\mu}(x)\}$, calculate $\Delta^{(i)}(x)$ and

$$G^{(i)}(x) = \exp(\frac{\alpha}{2}\Delta^{(i)}(x)), \qquad (24)$$

and update the configuration

$$U_{\mu}^{(i+1)}(x) = G^{(i)}(x)U_{\mu}^{(i)}(x)G^{(i)}(x+\hat{\mu})^{\dagger}.$$
 (25)

Calculate and see the value of $\Delta^{(i+1)}(x)$ or $\theta^{(i+1)}$.

(B)

Fourier acceleration

In the continuum QCD,

$$\Delta^{(i)} \to \partial \cdot A^{(i)} = \partial \cdot A^{(i-1)} + \alpha (\partial_{\nu} D_{\nu}) \partial \cdot A^{(i-1)}$$
(26)

where $D_{\nu}f = \partial_{\nu}f - i[A_{\nu}, f]$. In abelian limit, each Fourier component decays as follows,

$$\partial \cdot A^{(i)}(p) = \underbrace{(1 - \alpha p^2)}_{\approx exp[-\alpha p^2]} \partial \cdot A^{(i-1)}(p).$$
⁽²⁷⁾

Acceleration is,

$$\alpha \to \alpha \frac{p_{max}^2}{p^2}.$$
 (28)

(日) (周) (三) (三)

Result

Effect of the acceleration

Comparing various algorithms

Tested with node geometry (2,2,1,1)

Algorithm	iter	time(s)
Cabbibo-Marinari	7200	166
SD	17530	304
SDFA (FFT)	1250	31

Table : $8^3 \times 32$ lattice configuration

→ 3 → 4 3

Result

Volume dependence of iteration time

 Figure : Single iteration time of various lattice volume with node geometry

 (2, 2, 2, 2)

 Sungwoo Park (SNU)

Joint Winter Conference

 01/2015
 17 / 22

Gribov copy

- Gribov (1978) discovered that for non-abelian gauge theories, usual linear gauge conditions does not fix the gauge fields in a unique way.
- There can be two different configurations that both satisfy the gauge fixing condition, but related by nontrivial gauge tr. Simply,

$$\{U\} \to \{U^{g1}\}, \{U^{g2}\}$$
 (29)

such that $\theta[U^{g1}] = \theta[U^{g2}] = 0$, but $\{U^{g1}\} \nsim \{U^{g2}\}$.

• • = • • = •

Gribov uncertainty

Matrix elements between quark states

- Need gauge fixing.
- Additional Gribov copy degree exists and that may appear in the result with statistical uncertainty.

3 🕨 🖌 3

Generation of Gribov copy

The landscape of minima of the functional F_L

Figure : Histogram of 200 confs. generated from a single $8^3 \times 32$, $\beta = 5.7$ conf.

Sungwoo Park (SNU)

Future plan

- Multi-GPU implementation of the gauge fixing algorithm
- Gribov copy dependence of NPR related to the neutral Kaon mixing

(3)